Abstract Preview

Here is the abstract you requested from the DPC_2011 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Cu Pillar Bumping Technology with Solder Alloy Versatility
Keywords: Cu Pillar Bumping, Flip Chip Assembly, Flip Chip in Package Reliability
There is considerable interest in the semiconductor industry regarding Cu pillar bumping for finer pitch flip chip and 3D packaging applications. A common Cu Pillar method of production incorporates a combined Cu plated post topped with a plated solder pillar cap, usually of a Sn or SnAg alloy. Compared with this, a unique method of Cu pillar bump production developed at FlipChip International, LLC (FCI) creates the solder cap by applying and reflowing a solder paste on top of the plated Cu post. This method of production offers several benefits; the most important include a broader solder alloy selection, better alloy control, and improved overall pillar height uniformity. FCI has qualified a wide range of Cu pillar bump sizes, heights and shapes including Cu pillar bumps for fine pitch applications as low as 35um pitch (NANOPillarTM). FCI's Cu pillar bump structures in overmolded SiP have passed JEDEC 22-A104C board level thermal cycle testing, JEDEC J-STD-20A MLS 3@260C, as well as other board level corrosion and shock testing. FCI has demonstrated capping Cu pillar bumps with a broad range of solder alloys tailored to specific application requirements.
Guy Burgess, Process Engineer
FlipChip International
Phoenix, AZ

  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems
  • Technic