Abstract Preview

Here is the abstract you requested from the IMAPS_2011 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Evaluation of Electromigration in Flip-Chip Solder Joints
Keywords: Electromigratiom, Crystallographic orientation, Flip chip
The flip-chip solder joint has become one of the most important technologies of high-density packaging in the microelectronics industry. But, electromigration has become a critical reliability issue in flip-chip technology. Because the dimensions of solder joints are expected to decrease and current density is expected to increase. This study is about electromigration of flip-chip solder joints, we evaluated many kinds of solder balls such as SnAgCu, SnCu and so on in flip chip package. The lifetime against electromigration was defined the fail from the value of resistance with electric current reaches 1.5 times of that of initial resistance with electric current for. In solder bumps with electric current, since the atoms composed of the solder bump and UBM move in the direction of electron flows, the IMC was accumulated on the anode side. Meanwhile, the IMC disappeared in the cathode side, and the voids were formed. In the solder bumps without electric current, the IMC gradually grew on both sides. SnAgCu had better lifetime than SnCu, and different time-to-failure caused by different crystallographic orientation of Sn. And various dopants in SnCu had a different EM lifetime each other.
Hyun-Kyu Lee, Senior Researcher
Ulsan 683-804, Ulsan

  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems