Micross

Abstract Preview

Here is the abstract you requested from the DPC_2012 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Advanced Substrate Applied Fluxing Underfill for Bonding of Fine Pitch Solder Capped Cu Pillars to Oxidized Cu Substrates
Keywords: Underfill, Cu Pillar, Fluxing
Underfill solutions for fine pitch flip chip assemblies is an active area of development. Non-conductive films (NCF) and pastes (NCP) have shown great potential in bridging the gap between no-flow and capillary underfills for improving the reliability of fine pitched devices. But NCFs and NCPs require costly passivated pad finishes (e.g. Au, Sn, Ni, OSP) or careful substrate handling for proper solder joint formation. In this paper, we will describe a new class of underfill material that benefits from the growing trend of using thermal compression bonding as a cost effective alternative to mass reflow based underfilling processes (e.g. capillary and no-flow). This material is a fluxing NCP that is useful for a wide variety of fine pitch substrates, including low cost Cu. The material we will demonstrate contains many advanced features: high filler loading, strong flux activity, long work life, off-tool pre-dispense, low stress, high Tg, high modulus and rapid cure. The all-in-one underfill demonstrated in this paper is applied by using a screen printing process, where the material is applied to all of the chip sites in one step achieving excellent application efficiency and wetting/conformity to the substrate. The substrate is glass, containing a 4x4 array of die sites. Each of the die sites are 5x5mm in size with a full area array of 2501 Cu pads (50um pads on 100um pitch) that are pre-oxidized for 1h at 175C in air prior to printing (to simulate a dehydration bake). This transparent substrate was chosen to show the robust nature of the underfill for fluxing, stability and void-free placement/cure. Images of the substrate, before and after chip bonding will be given, along with cross sections. Details of the material properties will also be discussed.
Russell Stapleton, Staff Scientist
LORD Corporation
Cary, NC
USA


CORPORATE PREMIER MEMBERS
  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • NGK NTK
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems