Micross

Abstract Preview

Here is the abstract you requested from the DPC_2012 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Modeling and Simulation of 3D MEMS Integrated RF Circuits
Keywords: MEMS, 3D, RF
Today's integrated packaging consists of analog, mixed-signal and RF circuits. These integrated packages are now available in 3-D which makes it extremely difficult to test for defects and their circuit functionalities. This paper provides 3D MEMS integrated packaging which provides self testing and calibrations to overcome process defects and out of spec circuits inside the package making the package self heal itself in case of faults and defects. We have worked on TSV based 3D packaging with MEMS switches to perform self calibrations. We developed a novel multi-tone dither test technique where the test stimulus is generated by modulating the RF carrier signal with a multi-tone signal generated on an Arbitrary Waveform Generator (AWG) with additive white Gaussian noise. We used arrays of MEMS switches to perform self testing. We have considered a low noise amplifier as the reference RF circuit which operates between 4 GHz and 6 GHz. The entire validation of the design using test technique and self-calibration of the RF circuit is automated using the calibration algorithm. The paper presents defects in TSV due to mechanical stress and thermal changes.
Bruce Kim, Associate Professor
University of Alabama
Tuscaloosa, AL
USA


CORPORATE PREMIER MEMBERS
  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • NGK NTK
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems