Micross

Abstract Preview

Here is the abstract you requested from the DPC_2012 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Evaluating Thermal Cycling Fatigue Resistance for LED Chip-on-Board Applications
Keywords: Chip-on-Board, Solder, Reliability
LED chip-on-board applications typically involve assembling an LED die stack directly on to a high thermal conductivity substrate such as a Metal Core PCB. If solder is used for die-substrate attach for such chip-on-board applications, one needs to consider the CTE mismatch between the die stack and the MCPCB and its impact on thermal cycle-induced creep fatigue of the solder material. This paper presents a methodology to compare relative performance of different solder materials with varying thermo-mechanical properties, and compare the impact of CTE mismatch and temperature swings on transient thermal properties and relative reliability of the solder attach materials. Implications for LED chip-on-board applications are discussed.
Ravi M. Bhatkal, Ph.D., Vice President, Energy Technologies
Cookson Electronics
South Plainfield, NJ
USA


CORPORATE PREMIER MEMBERS
  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • NGK NTK
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems