Device Packaging 2019

Abstract Preview

Here is the abstract you requested from the HiTEC_2012 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Multiple System Configurations in a 32-bit Extreme Environment
Keywords: Systems, Microcontroller, High Temperature
Full computational systems are needed at extreme environments (to 300C) to increase functionality and reduce cost in the ever advancing oil/gas, geothermal, aeronautic, and automotive industries. Commercially available electronic components are not available to build a reliable system. A single microcontroller device can be used in systems of varying complexity, from small, mid, large, and multiprocessor scale. The 32-bit microcontroller will use a low power silicon-on-insulator CMOS process to increase long term reliability. Communication ports are provided to allow for simple systems with a single processor to complex multiprocessor systems with multiple controlled devices and external memory. As no adequate non-volatile solution is available for extreme conditions, multiple boot options are available to load instructions from external sources. Fault tolerance should be provided by system error detection. Battery backup must be provided for program and data retention. The resulting microcontroller will allow a wide variety of extreme environment systems, from simple to complex.
Michael C. Brown, Project Engineer
Provo, UT

  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems
  • Technic