Micross

Abstract Preview

Here is the abstract you requested from the HiTEC_2012 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Recent Progress in Thin Film Multichip Packaging for High Temperature Digital Electronics
Keywords: Thin Film, Multichip Packaging, High Temperature
A thin film material and process technology is being developed and evaluated for high temperature (300oC) digital multichip modules for use in geothermal well instrumentation. The substrate technology selected is AlN to minimize the difference in the coefficient of thermal expansion between the substrate and the SiC digital die. A thin film/plated Ti/TiW/Au metallization is used with a plasma enhanced chemical vapor deposited Si3N4 to create multilayer interconnections. Active components are assembled to the interconnect substrate using Au stud bump thermocompression bonding. The Au stud bump maintains a monometallic interface between the substrate Au pad surface and the Au pads on the SiC die. A digital circuit has been built and successfully tested as an initial demonstration.
Kun Fang, Student
Auburn University
Auburn, AL
USA


CORPORATE PREMIER MEMBERS
  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • NGK NTK
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems