Abstract Preview

Here is the abstract you requested from the IMAPS_2012 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Planarization of Deep Structures Using Self-Leveling Materials
Keywords: planarization materials, self-leveling, deep structures
To achieve device integration that will allow the manufacture of microelectronics that are smaller, more functional, and more efficient, the industry increasingly requires materials to fill and planarize devices with deep structures. Brewer Science has developed several new self-leveling materials to address these planarization needs. These newly developed materials are designed to be either temporary materials that can be removed after their use in processing steps or permanent materials that can stay in a device for its lifetime. These new materials can be applied easily by means of a spin-coating process. They are unique because they can fill and planarize high-aspect-ratio trenches and vias hundreds of microns deep. Some of the materials are photosensitive and can be patterned using photolithography. The photosensitive materials can be developed with industry-accepted solvents and/or an aqueous TMAH solution. Because of their good thermal stability, high transparency, and excellent planarization properties, these materials have potential applications for microelectromechanical systems (MEMS), 3-D integrated circuits, light-emitting diodes (LEDs), semiconductors, flat panel displays, and related microelectronic and optoelectronic devices. This paper will discuss the properties of these new materials and will present the filling and leveling results obtained in several applications.
Dongshun Bai, Scientist
Brewer Science, Inc.
Rolla, MO

  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Rochester Electronics
  • Specialty Coating Systems
  • Spectrum Semiconductor Materials
  • Technic