Micross

Abstract Preview

Here is the abstract you requested from the cicmt_2013 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

LTCC-3D FLOW FOCUSING MICROFLUIDIC DEVICE FOR NANOPARTICLE FABRICATION AND PRODUCTION SCALE-UP
Keywords: LTCC, Microfluidic devices, Nanoparticle fabrication
Miniaturization of chemical processes is becoming a must for green chemistry and sustainable industry processes, so technological research in this direction is well received. Continuous microreactor systems hold many potential benefits over batch reactors allowing: high surface-to-volume ratio, fine adjustment of chemical reaction residence times, small thermal inertia and fast changes in temperature. Advantages of multilayer green ceramics for microprocess applications include: LTCC substrate is chemically inert to most solvents, it has a high contact angle, presents low thermal coefficient of expansion, can withstand high operational temperatures and high internal pressures. For these reasons, LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical process, making it an enabling technology for the miniaturization of chemical processes. In fact, recently LTCC microfluidic devices have been used to produce micro and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC flow focusing Microfluidic device designed to fabricate Nanoparticles using nano precipitation through an anti-solvent, with electric potential size tuning. We also present suggestion of approaches to nanoparticle production scale-up.
Mario Ricardo Gongora-Rubio, Senior Researcher
INSTITUTO DE PESQUISAS TECNOLOGICAS DO ESTADO DE SÃO PAULO
SÃO PAULO , Select
BRAZIL


CORPORATE PREMIER MEMBERS
  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • NGK NTK
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems