Abstract Preview

Here is the abstract you requested from the IMAPS_2013 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Advanced Thermal Simulation Model for Power MOSFETs
Keywords: Simulation, MOSFET, SOA
Modern Power MOSFETs are widely used for high efficiency SMPS applications. Also, they provide very low on-resistance which reduces conduction losses in Oring or eFuse applications. These applications as well as others have transition states in which they drive the MOSFET in linear mode operation during turn-on and turn-off events respectively. The high cell density in modern Power MOSFETs provokes uneven current distribution in linear mode operation which locally stresses certain cell areas more than others. To prevent destruction, the SOA of these MOSFETs has a thermal limit line boundary imposed. With existing L3 MOSFET models it is possible to simulate temperature rise and power loss of the entire MOSFET. However, the local heating effect is not represented in this model. Here, a wrapper is being introduced. It converts a standard L3-model into a model that incorporates a dynamic representation of the entire SOA diagram. The temperature rise follows the hottest cell so that simulations in linear mode become a valid way to predict the highest junction temperature. The limitations of this approach will be outlined.
Jens Ejury, Principal Application Engineer
Infineon Technologies N.A. Corp
Milpitas, CA

  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Rochester Electronics
  • Specialty Coating Systems
  • Spectrum Semiconductor Materials
  • Technic