Abstract Preview

Here is the abstract you requested from the hitec_2014 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Class-I and Class-II Ceramic Capacitors for High Temperature Applications
Keywords: Ceramic Capacitor, C0G X7R, Class-I Class-II Capacitor
There is a growing need for ceramic capacitors for applications at temperatures of 150°C or above, such as electronics for down-hole drilling and exploration, geothermal energy generation and power electronics. Conventional X7R and X8R type ceramic capacitors are designed for applications up to 125°C and 150°C, respectively. At temperatures above 150°C, these types of capacitors typically suffer from degradation of reliability performance and severe reduction in capacitance, especially under DC bias conditions. Recently, a Class-I C0G dielectric has been developed using Nickel electrodes for high temperature application up to 200°C and beyond. Due to its linear dielectric nature, this material exhibits highly stable capacitance as a function of temperature and voltage. Multi-layer ceramic capacitors (MLCC) made from this material can be qualified as X9G with robust reliability. We have also developed a modified-X7R dielectric composition with nickel internal electrodes to design robust reliability in this Class-II dielectric at 175°C. This paper will report electrical properties and reliability test data on these Class-I C0G and Class-II ceramic capacitors at high temperatures of 150-200°C and above.
Abhijit Gurav, Vice President, Ceramic Technology
KEMET Electronics Corporation
Simpsonville, SC

  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems