Micross

Abstract Preview

Here is the abstract you requested from the cicmt_2016 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Passive Wireless Gas Sensors Based on the LTCC Technique
Keywords: wireless gas sensor, LC antenna, SnS2 films
Many of the existing gas sensors cannot offer long-term continuous performance, rendering them selected ineffective for environmental and point-of-care monitoring tasks. The problem may arise from the limitation in accessible power supplies for their operation and signal communications. As a solution, a wireless passive gas sensor based on low temperature co-fired ceramic (LTCC) technology will be presented. The sensor consists of a planar inductor-interdigital capacitor resonant antenna circuit, covered with gas sensitive coatings. The antenna together with this pair of interdigital electrodes was fabricated using the LTCC process. Gas sensitive films were made of two dimensional tin disulfide (SnS2) nanostructures, which were deposited on the interdigital electrodes by drop-casting method. The gas sensing performance was investigated by monitoring the impedance phase angle changes of the antenna in response to different gas types including EtOH, NH3 and NO2. The testing results showed that the sensor had selectivity for gas detection. The best sensitivity was obtained toward NO2 gas.
Yongxiang Li, Prof.
Shanghai Institute of Ceramics, Chinese Academy of Sciences
Shanghai, Shanghai
China


CORPORATE PREMIER MEMBERS
  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • NGK NTK
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems