Abstract Preview

Here is the abstract you requested from the dpc_2016 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

TCAD Modeling of InGaN-Based High Temperature Photovoltaic Solar Cell
Keywords: Modeling, Solar Cell, InGaN
To improve the efficiency of concentrated solar power hybrid system, a photovoltaic (PV) solar cell with high efficiency and operated at high temperatures is needed. In that regard, InGaN material system provides a platform for high temperature PV solar cells since nitride based optoelectronics are demonstrated to operate at high temperatures (>400 ℃). The direct and tunable band gap of InGaN semiconductor offers a unique opportunity to develop high efficiency solar cells. Band gap of the InGaN semiconductor can vary from 0.65 to 3.42 eV, which covers a broad solar spectrum from near-infrared to near-ultraviolet wavelength region. This work involves TCAD simulation and optimization for InGaN solar cell at high temperature. 1J multiple quantum well(MQW) solar cell is simulated and compared with experimental results. Monolithic and mechanical multi-junction solar cell designs are investigated, and show promising efficiency under light trapping. We also introduce a step layer at hetero-interface to relax band offset and polarization, which is more practical compared with Indium composition grading layer for the sake of fabrication. Theoretical conversion efficiency of the best devices are larger than 26% at 450 ℃ with an incident solar radiation concentration of 200 suns. Thus, we demonstrate that 2J tandem solar cells made in InGaN material system are very suitable for concentrated solar power hybrid system.
Yi Fang,
Arizona State University
Tempe, Arizona

  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Rochester Electronics
  • Specialty Coating Systems
  • Technic