Abstract Preview

Here is the abstract you requested from the Wirebonding_2016 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Copper Wire Bonding Ready for Industrial Mass Production
Keywords: Copper wire bonding, copper wire, consumable lifetime
Copper wire as a bonding material for the top side connection of power semiconductors is highly desired. One current drawback in heavy copper wire bonding is the relatively low lifetime of the consumables. The bonding tool wear mechanisms and the corresponding factors are investigated. To reduce wear, different approaches are tested in long-term bonding tests. Optimized bonding tool tip geometry and tool material are two of these. Optimized bonding parameters were investigated as well and show a significant improvement in bonding tool lifetime. Wear and lifetime of cutter and wire guide are also examined. Additionally, the impact of bonding tool wear on different aspects of bond quality is addressed. It is also shown how wear can be monitored by machine process data recording and how a derived signal correlates to the actual wear status. These major advances in heavy copper wire bonding now make it a robust, reliable and efficient interconnection technology.
Michael Broekelmann,
Hesse Mechatronics
Paderborn, Hesse

  • Amkor
  • ASE
  • Canon
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Plexus
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems