Device Packaging 2019

Abstract Preview

Here is the abstract you requested from the imaps_2018 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Upscaling Panel Size for Cu Plating on FOPLP (Fan Out Panel Level Packaging) Applications to Reduce Manufacturing Cost
Keywords: Cu Plating, Panel Level Plating, Equipment Chemistry
Electrolytic metal deposition is a key process step in the manufacturing of vertical and horizontal interconnections used in today's PCBs and IC substrates on one hand and advanced packaging applications on the other hand. Historically both application areas were clearly defined and separated by different requirements in feature sizes and substrate formats. PCBs and IC substrates were based on organic large scale substrates with rather large features while advanced packaging technology is wafer based with the capability to incorporate fine features down to a few microns. The ever increasing demand of higher performance, lower cost and thinner end user devices like smart phones require intense developments and innovation in all areas of the electronic component design including the substrate and chip packaging. Latest manufacturing technologies in both areas like fan-out wafer level packaging and advanced substrates are constantly emerging and promise to be a critical piece to meet these requirements. As a consequence both areas are currently merging while creating a new application segment. This segment combines the request of small feature sizes with the manufacturability on large scale substrates. Obviously many of the traditional process technologies like plating and available equipment cannot be easily adopted and need certain developments, adaptions and improvements. In this respect, a key challenge in the area of electrolytic metal deposition is the combination of various challenging requirements: creation of feature sizes down to 2µm L/S with heterogeneous feature density on large substrates up to 600mm at excellent metal thickness uniformity and high plating speed. The paper presents latest studies and conclusions in critical performance areas of the plating process such as electrolyte fluid dynamics, impact of anode design, pulse reverse rectification and newly designed electrolytes. Finally latest test results of optimised process conditions will be discussed in detail with different feature sizes providing data of within die and within substrate uniformity. All tests are done on panel level, both organic and glass substrates. The latest findings and achievements of the discussed panel based plating process technology will support the industry to develop panel based packaging processes that meet both technical and commercial requirements.
Dirk Ruess, Sales Development Manager
Atotech Deutschland GmbH
Feucht, Bayern
Germany


CORPORATE PREMIER MEMBERS
  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • NGK NTK
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Specialty Coating Systems
  • Technic