Abstract Preview

Here is the abstract you requested from the hiten_2019 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Resistor Selection for High Temperature Applications
Keywords: Resistor, Selection, Construction
Abstract The use and growth of high temperature electronics in a variety of applications (such as oil and gas exploration and production, automotive under the hood, aerospace and satellite/space to name a few), has necessitated a closer look at the technology used in passive components (such as resistors). A variety of resistor technologies may be suitable for high temperature applications. In the paper information on thin film technologies (both nichrome and tantalum nitride thin film information is presented), thick film, wire-wound, along with carbon and ceramic composition types, with discussions regarding their respective characteristics that make them more or less suitable for high temperature and other excessive environments. This paper presents information on resistor construction details, material information and manufacturing processing, along with test data and performance summaries under short and long term high temperature conditions. Additionally, other pertinent test data through a multitude of standard and customized environmental tests is presented Although resistors and other passive components are often taken for granted, high temperature applications can tax the performance of many resistor types. The proper selection of resistive components will insure that the resistor tolerance stability, temperature coefficient (and temperature coefficient tracking for resistor networks), and resistor reliability is maintained to insure reliable circuit performance. INTRODUCTION Until recently, the most common limiting factor in high temperature electronics has been the degradation in semiconductor properties of the active components used. However, with the recent advances in high temperature semiconductors and silicon carbide based materials, passive components, such as resistors can be the limiting factor. As a result, proper resistor selection has become a critical factor in the design of high temperature electronics to insure proper operation and reliability. Resistors have traditionally been manufactured by a variety of methods and technologies, including metal and metal oxide film, metal foil, carbon, wire-wound, and thick film methods. Each of these has specific characteristics which make them more or less suitable for high temperature applications. Resistor degradation at high temperature can vary from a small resistance change over time to a catastrophic change in resistance, exhibited by either becoming open circuit or in some cases a short circuit. Additionally, the coating and insulation materials used have a significant impact on the suitability of the resistor in high temperature applications. This paper reviews all the parameters in a resistor to insure the design engineer has sufficient information to make knowledgeable and proper resistor selection to insure optimum cost, performance and long term life.
Tom Morris, Field Applications Engineer
TT Electronics
Opelika, Alabama
United States

  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Rochester Electronics
  • Specialty Coating Systems
  • Spectrum Semiconductor Materials
  • Technic