Abstract Preview

Here is the abstract you requested from the imaps_2019 technical program page. This is the original abstract submitted by the author. Any changes to the technical content of the final manuscript published by IMAPS or the presentation that is given during the event is done by the author, not IMAPS.

Co-Package Technology Platform for Low Power and Low Cost Data Centers
Keywords: Silicon photonics, 3D device integration, hybrid integration
Modern data center (DC) utilize hundreds of thousands of servers in several hierarchy layers which require an efficient interconnection network which is both low-cost and energy-efficient. In addition, the switching platforms must support the high bandwidth required for large scale non-blocking topologies. These severe requirements are difficult to fulfil using conventional electronic packet switching and copper-based interconnection technologies with the main limitations arising from high power consumptions, limited reach and increasing latency. In this paper we report on recent advances in photonic–electronic integration developed within the framework of European research project L3MATRIX. The outcome of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two dimensional silicon photonics arrays with 64 modulators were fabricated in the fab. Novel modulation schemes based on slow light modulation have been developed to assist in achieving efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Packaging of these 2D photonic arrays in a chiplet configuration has been demonstrated using a vertical integration approach in which the optical interconnect matrix was flipchip assembled on top of CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surround by several such optical chiplets. We summarize the features of L3MATRIX co-package technology platform and its holistic toolbox of technologies to address also next generation computing challenges.
Victor Sidorov,
ams AG

  • Amkor
  • ASE
  • Canon
  • Corning
  • EMD Performance Materials
  • Honeywell
  • Indium
  • Kester
  • Kyocera America
  • Master Bond
  • Micro Systems Technologies
  • MRSI
  • Palomar
  • Promex
  • Qualcomm
  • Quik-Pak
  • Raytheon
  • Rochester Electronics
  • Specialty Coating Systems
  • Spectrum Semiconductor Materials
  • Technic